

Control Industrial Application using Multi-Microcontroller Communication

Surendra Kumar Daiya¹, Rakesh Khandelwal², Rajni Jainwal³, Manmohan Singh Chandoliya⁴

EC, M. Tech Scholar, Yagyavalkya Institute of Technology, Sitapura, Jaipur, India^{1,4} EC, Assistant Professor, Yagyavalkya Institute of Technology, Sitapura, Jaipur, India² EC, Lecturer, Mandsaur Institute of technology(MIT), RGPV University, India³

Abstract: In recent years, multiprocessor designs have converged towards unified hardware architecture despite supporting different communication abstractions. Some recent designs have employed a programmable controller to manage system communication. The Master/Slave pattern is most commonly used when responding to user interface controls while displaying data simultaneously. Master/slave is model of communication where one device or process has unidirectional control over one or more other devices. In some systems a master is elected from a group of eligible devices, with the other devices acting in the role of slaves. We have developed a Master Slave Communication using three microcontroller AT89S52 which communicates through RS 232 serial bus. There are three units; first unit is a Master controller Circuit which controls different parameters; second unit is a Sensing unit which acts as a slave and third unit is another slave which is a display system.

Keywords: AT89S52, Master Controller Circuit, Salve circuit, RS-232 protocol.

T. INTRODUCTION

To address the communication problem, multiprocessor advantages over wireless technology. It is more secure and to the application. Unfortunately there is so many numbers wireless adapters and access points may cost three or four and settings that we need to employ totally different and integral part of modern industrial environmental as today dedicated control systems for each requirement.

the first consideration in designing networked embedded with master controller representing the control station from no limit because controlling parameters are of many kinds. section of the industrial setting, and slaves mimicking the For example, some of these are Analog like voltage, role of location where these command are sent to be Date, Calendar, Duration, keypad, switches,. Most of the station (e.g. sensors) [1]. industrial applications use the analog sensors with transmitters for sensing the process parameters.

connected individually. This would take up precious pins parameters. on the microcontroller, result in a lot of traces on the PCB, 1)Temperature of the running motor in degree Celsius. and require more components to connect everything together. This made these systems expensive to produce and susceptible to interference and noise.

The question arises that "can we make a system capable to The system can work either manually or automatically. As handle many parameters at ones?" In this paper we a Manually controlled system continuously scans for all targeted to make would be the solution for this question.

A critical problem in multiprocessors is managing The Master/Slave design pattern is very advantageous communication between the processors in the system. when creating multi-task applications. It gives us a more Individual processor performance is important, but it alone modular approach to application development because of is not sufficient to achieve scalable system performance. its multi-loop functionality. Wired technology has some systems research has explored a broad range of design no data loss. Wireless gear costs somewhat more than the styles and, in turn, communication abstractions presented equivalent wired Ethernet products. At full retail prices, of and so many types of physical conditions, parameters times. The multi microcontroller communication are an communications are of much important than ever. The The basic requirement of industrial control and monitoring hardware developed is a simplified prototype of the systems is the response time; therefore, time constraint is communication models used in industrial environments, systems [3]. The requirements of controlling action have where instruction and commands are sent to different temperature, light, Illumination, pressure, executed. More often than not, such destinations are also proximity and so on, some of these are digital like Time, capable to send latest data to the display station and control

II. SYSTEM MODEL

The benefits of digital technology in the vast world of The whole system (Multi-microcontroller Communication analog sensors can be implemented by development of for Control Industrial Application) is divided into three appropriate multi sensor embedded system [4]. When stations. It consists of a single master and two slaves that connecting multiple devices to a microcontroller, the together control, display and sensing at condition address and data lines of each device were conventionally monitoring of the induction motor in terms of following

- 2) Revolutions per Minute (R.P.M.) of the rotating shaft of the motor.

the above parameters and makes it available to user via a

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 3. Issue 7. July 2015

Display station (Slave2) and in interactive way. At control recorded in Table 3.1. station (Master) based on the various parameter value a person which is at control station can take action and make connection to a Computer System communication RS232 for data acquisition. As a automatic controlled system motor can be on or off according to setting of motor's temperature.

2.1 Block Diagram

The block diagram for the complete system is shown in figure. As shown in figure 2.1 all the sensors are connected with the sensing station i.e. slave 1 and the sensing station is also connected with the display station i.e. slave 2 and control station i.e. master using bus controls transmitting and receiving of the data.

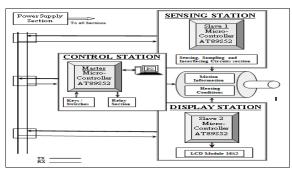


Figure 2.1 Block Diagram of Master/Slave communication.

As in the above system block diagram there are three stations: sensing, display and controlling station. The system can be used at any place where there is a need to know these parameters and /or to control any device or appliances based on it. Some of applications are as follows:

- In Home, Offices, Complexes to automatically turn on or off appliances like Fan, Coolers, etc. according to temperature of motor.
- In Industries, where various processes are carried out, and where there is need to make control on process temperature and R.P.M. conditions.
- and where there is need to make control on process Equation 3.1 temperature and R.P.M. conditions.
- In Security devices to get protection against fire, over temperature, over load etc.

In remote station equipment's to continuously monitoring of temperature conditions.

III RESULT AND DISSCUSION

3.1 RESULT AND DISSCUSION

In software implementation, all the test and sample codes have been tested and executed on AT89S52 and an algorithm has been developed.

All the sensors work well and we can monitor the Induction motor speed (R.P.M.) and Temperature data through the system. From experiment, the data was

S. No.	Value of Parameter		
	Speed (rpm1) Measured by Tachometer	Speed (rpm2) Measur ed by System	% Error = $\frac{\text{rpm}_1 - \text{rpm}_2}{\text{rpm}_1} \times 100\%$
1	2947	2954	0.237
2	2950	2960	0.338
3	2952	2962	0.34
4	2953	2964	0.372
5	2953	2965	0.406
6	2952	2963	0.372
7	2954	2965	0.372
8	2953	2964	0.372
9	2953	2964	0.372
10	2952	2963	0.372

Table 3.1 Speed measured by Tachometer / System

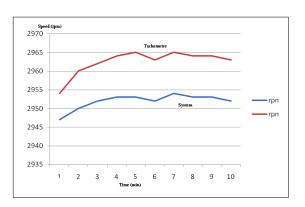


Figure 3.2 speed / time graph

The accuracy of the system can be checked by calculate its • In Industries, where various processes are carried out, standard deviation, s for percentage of error by using

$$s = \sqrt{\frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n - 1}}$$

$$S = 0.045$$
(3.1)

IV. CONCLUSION

In this Paper, we investigated the performance of Master/Slave Communication using RS 232 In particular, we have analyzed the performance of all the sensors work well and we can monitor the Induction motor speed (R.P.M.) and temperature data through the system. The standard deviation percentage [S=0.045] of error is quite small, so it can be concluded that the reading of the system speed measurement is quite reliable communication was proper between controller.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 3, Issue 7, July 2015

REFERENCES

- [1] K.Altaf, J. Iqbal "Multiprocessor Communication using 8051 microcontroller and RS-485 Line Driver" Department of mechatronics, Collage of E & ME National University of Science and Technology, Rawalpindi, Pakistan
- [2] J.Hao Teng, IEEE Member Chin-Yuan Tseng Yu-Hung Chen" Integration of Networked Embedded Systems into Power Equipment Remote Control and Monitoring" Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan
- [3]. C. Anand, Shashikant Sadistap, Satish Bindal and K. S. N. Rao "Multi -Sensor Embedded System for Agro-Industrial Applications" Central Electronics Engineering Research Institute (CEERI) Pilani-333031, India Council of Scientific and Industrial Research (CSIR).
- [4]. G. Smith and M. Bowen "Consideration for the utilization of smart sensor" Sensor and Actuators A 46-47 (1995) 521-524.
- [5]. A. Flammini, P. Ferrari, D. Marioli, E. Sisinni, A. Taroni "Sensor networks for industrial application" University of Brescia -Department of Electronics for the Automation.
- [6].M. Popal, A.S. Popa2, V. Cretu3, M. Micea4 "Monitoring Serial Communications in Microcontroller Based Embedded Systems" 1, 3' 4Computer and Software Engineering Department, Faculty of Automation and Computers
- [7]. Bin Li, Jinhui Lei "Design of Industrial Temperature Monitoring System Based on Single Chip Microcontroller" School of Engineering and Automation Kunming University of Science and Technology Kunming, China.
- [8].M.A.Mazidi, Janice Gillispie, Rolin D. Mckinlay "The 8051Microcontroller and Embedded Systems" Using Assembly and C, 2nd edition, published by Pearson education.
- [9]. Eagle PCB design, Editor User's Guide.
- [10]. µVision3 Keil IDE, Simulator, Editor User's Guide.
- [11].http://www.datasheetarchive.com/atmel%20microcontroller-datasheet
- [12].http://html.alldatasheet.com/htmlpdf/8105/NSC/ADC0804/38/1/ADC0804.html.
- [13] PIC 16F877A Microcontroller Based Multiple DC Motors Controller Suroor Moaid Dawood, Dr.Rabee' Hashim The jeel Department of Electrical Engineering-University of Basrah-Iraq.